Κυριακή, 30 Απριλίου 2017

Πάσχα 2017!!

0σχόλια
*      Ελληνικά: "Χριστός Ανέστη!"
*      Λατινικά: "Christus resurrexit! Resurrexit vere!"
*      Ιταλικά: "Gesù Cristo è risorto! È veramente risorto!"
*      Αγγλικά: "Christ is Risen! Truly He is Risen!" or
*      Αγγλικά:"Christ is Risen! He is Risen indeed!"
*      Γαλλικά: "Le Christ est ressuscité! Il est vraiment ressuscité!"
 * * * * * * * * * 
Χριστός Ανέστη! Η ιστοσελίδα «Papaveri1948” εύχεται σε όλους Χρόνια Πολλά! Είθε, ο Αναστημένος Χριστός να μας βοηθήσει να ξεπεράσουμε την οικονομική κρίση, στην οποία έχουμε περιέλθει, και να ζήσουμε καλύτερες ημέρες!

Παρασκευή, 28 Απριλίου 2017

Σκαμνιά και Πολυθρόνες

2σχόλια
Σ’ ένα δωμάτιο υπάρχουν μερικά σκαμνιά με τρία  πόδια και μερικές πολυθρόνες. με τέσσερα πόδια. Όταν σε κάθε σκαμνί και σε κάθε πολυθρόνα κάθεται ένας άνθρωπος, το συνολικό πλήθος των ποδιών στο δωμάτιο είναι 39. Πόσα σκαμνιά και πόσες πολυθρόνες υπάρχουν στο δωμάτιο; (Κατ.34)
Πηγή: Quantum:Μαθηματικοί Γρίφοι (Τόμος 1ος, πρβ.57, Σελ.42)

Λύση

Λύση του Voulagx
Έστω ότι υπάρχουν «χ» σκαμνιά και «ψ» πολυθρόνες, όπου (χ,ψ) φυσικοί αριθμοί. Σύμφωνα με τα δεδομένα του προβλήματος θα έχουμε:
3χ+4ψ+2(χ+ψ)=39 --->2χ+4ψ+2χ+2ψ=39 ---> 5χ+6ψ=39 ---> 5χ=39-6ψ (1)
χ=(39-6ψ)/5 ---> χ=(40-1-6ψ)/5 ---> χ=40/5-(1+6ψ)/5 ---> χ=8-(1+ψ+5ψ)/5 ---> χ=8-5ψ/5-(1+ψ)/5 ---> χ=8-ψ-(1+ψ)/5 (2)
Πρέπει το (1+ψ) να είναι πολλαπλάσιο του 5, δηλ. 1+ψ=5κ (3)
Από την (1) έχουμε:
39-6ψ>0 ---> 39>6ψ ---> 39/6=6,5>ψ ---> 7,5>1+ψ=5κ ---> 7,5/5=1,5>κ
Άρα κ=1 (ο μόνος φυσικός μικρότερος του 1,5).
Oπότε η (3) γίνεται:
1+ψ=5 => ψ=4
Και αντικαθιστώντας τη τιμή του «ψ» στη (2) έχουμε:
χ=8-4-(1+4)/5=4-1=3 ---> χ=3
Στο δωμάτιο υπάρχουν 3 σκαμνιά και 4 πολυθρόνες. Τραπεζάκια για τους καφέδες δεν έχουμε για να μην μπλέξουμε τα πόδια.
Λύση του θεματοδότη
Στο δωμάτιο υπάρχουν 3 σκαμνιά και 4 πολυθρόνες. Έστω «Σ» τα σκαμνιά και «Π» οι πολυθρόνες. Βάσει των δεδομένων της εκφωνήσεως του προβλήματος έχουμε την εξίσωση:
5Σ+6Π=39 (1)
(α) Σ = Σκαμνί και Άνθρωπος= 3+2=5 πόδια.
(β) Π = Πολυθρόνα και Άνθρωπος=4+2=6 πόδια.
5Σ+6Π=39 ---> 5Σ=39-6Π ---> Σ=(39-6Π)/5 (2)
Διερεύνηση:
Λύνουμε τον ένα άγνωστο συναρτήσει του άλλου και κάνουμε την διερεύνηση των ακέραιων ριζών. Δίνοντας στο "Π" τις τιμές από το 1 έως το Ν, βλέπουμε ότι η μοναδική τιμή που ικανοποιεί τη συνθήκη και δίνει ακέραιο αριθμό "Σ" είναι ο αριθμός Π=4
Αντικαθιστούμε τη τιμή του «Π» στη (2) κι’ έχουμε:
Σ=(39-6Π)/5 ---> Σ=(39-6*4)/5 ---> Σ=(39-24)/5 ---> Σ=15/5 ---> Σ=3
Επαλήθευση:
5Σ+6Π=39 ---> [(5*3)+(6*4)]=39 ---> 15+24=39  ο. ε. δ.

Σάββατο, 22 Απριλίου 2017

Τα Μυρμήγκια

4σχόλια
Σε μια κοινότητα μυρμηγκιών, εάν τα χωρίσεις σε ομάδες των 8 μυρμηγκιών δεν  περισσεύει κανένα μυρμήγκι, ενώ εάν τα χωρίσεις σε ομάδες των 6 ή 7 μυρμηγκιών περισσεύουν 4.μυρμήγκια. Από πόσα μυρμήγκια αποτελείται αυτή η κοινότητα, εάν γνωρίζουμε ότι είναι περισσότερα από 60 και λιγότερα από 100; (Κατ.5)

Λύση

Τα μυρμήγκια είναι 88. Έστω ότι ο ζητούμενος αριθμός είναι ο «Ν». Από τη σειρά των αριθμών 6 και 7 βρίσκουμε το Ε.Κ.Π. τους που είναι:
Ε.Κ.Π.(6,7) =6*7=42
Συνεπώς ο (Ν-4) ισούται μ’ ένα πολλαπλάσιο του 42:
(Ν-4)=42, (Ν-4)=84, (Ν-4)=126, …, (Ν-4)=∞. Και Ν=(Πολλαπλάσιο+4), δηλαδή Ν=42+4=46, Ν=84+4=88, Ν=126+4=130, …, Ν= ∞+4= ∞.
Βάσει των δεδομένων της εκφωνήσεως του προβλήματος, διαλέγουμε το πολλα-πλάσιο που βρίσκεται μεταξύ του 60 και του 100, που είναι το 84.
Επομένως ο ζητούμενος αριθμός είναι:
Ν=(Πολλαπλάσιο+4) ----> Ν=84+4 ---> Ν=88
Επαλήθευση:
88mod6=4 ---> 88:6=6*14+υπ.4=84+4=88
88mod7=4 ---> 88:7=7*12+υπ.4=84+4=88
88mod8=0 ---> 88:8=8*11+υπ.0=88+0=88

Σάββατο, 15 Απριλίου 2017

ΠΑΣΧΑ 2017!!

0σχόλια
"Η προσαγωγή του Χριστού ενώπιον του Πιλάτου,
όπου καταδικάζεται σε σταυρικό θάνατο."
Η ιστοσελίδα του "Papaveri48" εύχεται σε όλους τους φίλους της ιστοσελίδας Καλή Ανάσταση και Καλό Πάσχα!!

Τετάρτη, 12 Απριλίου 2017

Οι Χωρικοί και τ' Αυγά

2σχόλια
Δυο χωρικοί έφεραν στην λαϊκή αγορά συνολικά 100 αυγά για να τα πουλήσουν. Ο ένας όμως είχε περισσότερα αυγά από τον άλλο. Και οι δύο όμως, αφού πούλησαν τα αυγά τους, πήραν τα ίδια χρήματα.
Ο πρώτος χωρικός είπε στο δεύτερο:
-«Αν είχα τα αυγά σου θα έπαιρνα 15 σακιά πίτουρα».
Ο δεύτερος χωρικός του απάντησε:
-«Αν είχα τα αυγά σου θα έπαιρνα  6 και  2/3 σακιά πίτουρα».
Πόσα αυγά είχε ο καθένας από τους χωρικούς; (Κατ.34)

Λύση

Λύση του μαθηματικού Γεωργίου Βούλγαρη
Ο πρώτος χωρικός είχε 40αυγά και ο δεύτερος χωρικός είχε 60αυγά. Έστω ότι ο πρώτος χωρικός είχε «α» αυγά και τα πούλησε προς «x» € το ένα, οπότε ο δεύτερος χωρικός είχε (100-α) αυγά και τα πούλησε προς «ψ» € το ένα. Επίσης έστω «κ» η τιμή για κάθε σακί του πίτουρου. Βάσει των δεδομένων της εκφώνησης του προβλήματος έχουμε:
α+β=100(1)
Ο πρώτος χωρικός εισέπραξε:
α*x ευρώ
Kαι ο δεύτερος χωρικός εισέπραξε:
(100-α)*ψ ευρώ
Επειδή και οι δύο χωρικοί εισέπραξαν τα ίδια χρήματα από την πώληση των αυγών έχουμε την εξίσωση:
α*x=(100-α)*ψ (2)
Εάν ο πρώτος χωρικός πούλαγε τα (100-α) αυγά του δεύτερου χωρικού προς «x» € θ’ αγόραζε 15 σακιά πίτουρα. Άρα έχουμε την εξίσωση:
(100-α)*χ=15*κ ----> x=15*κ/(100-α) (3)
Ομοίως, εάν ο δεύτερος χωρικός πούλαγε τα «α» αυγά του πρώτου χωρικού προς «ψ» € θ’ αγόραζε 6 και 2/3=(3*6+2)/3=(18+2)/3=20/3 σακιά πίτουρα. Άρα έχουμε: την εξίσωση:
α*ψ=(20*κ)/3 ---> ψ=(20κ)/3*α (4)
Αντικαθιστούμε τις τιμές (2) και (3) στην (1) κι’ έχουμε:
α*x=(100-α)*ψ ---> (α*15κ)/(100-α)=(100-α)*(20κ)/3*α --->3α*α*15κ=(100-α)*(100-α)*20*κ
Απλοποιούμε τα «κ» κι’ έχουμε:
3α^2*15=[(100-α)*(100-α)*20*κ]/κ --->
45α^2=(10.000-100α-100α+α^2)*20 45α^2=(10.000-100α-100α+α^2)*20 --->
45α^2=200.000-2.000α-2.000α+20α^2 --->
45α^2-200.000+2.000α+2.000α-20α^2 ---> 45α^2-20α^2+4.000α-200.000=0 --->
25α^2+4.000α-200.000=0
Διαιρούμε το πρώτο μέλος με το 25 κι’ έχουμε:
25α^2+4.000α-200.000=0 ---> (25α^2+4.000α-200.000)/25=0 ---> α^2+160α-8.000=0 (5)
Βάσει του τύπου της δευτεροβαθμίου εξισώσεως x=[-β+/-sqrt[(β^2)-4αγ]]/2α έχουμε:
α=[-β+/-sqrt[(β^2)-4αγ]]/2α —> α=[-160+/-sqrt[(160^2)-4*1*(-8.000)]]/2*1 —>
α=[-160+/-sqrt[25.600+32.000]/2 —> α=[-160+/-sqrt57.600]/2 —> α=(-160+/-240)/2
α1=(-160+240)/2 —> α1=80/2 —> α1=40 (αποδεκτή) (6)
α2=(-160-240)/2 —> α2= -400/2 —> α2= -200 (απορρίπτεται)
Αντικαθιστούμε την (6) στην (1) κι’ έχουμε:
α+β=100 ---> 40+β=100 β=100-40 ---> β=60 (7)
Επαλήθευση:
α+β=100 ---> 40+60=100 ο. ε. δ.
Σημείωση:
Από τη λύση δεν προσδιορίζεται η τιμή πώλησης του ενός αυγού από τον κάθε ένα. Απλά προσδιορίζεται μόνο ο αριθμός των αυγών. Οι μόνες λογικές τιμές, με τα σημερινά δεδομένα, που θα μπορούσαμε να αποδεχτούμε, είναι ο πρώτος χωρικός να πούλησε τ’ αυγά του προς x=0,60€ και ο δεύτερος χωρικός να πούλησε τ’ αυγά του προς ψ=0,40€.
Από τη (2) βρίσκουμε πόσα χρήματα εισέπραξε ο καθένας από την πώληση των αυγών:
α*x=(100-α)*ψ ---> α*x=60*ψ ---> 40*0,60=60*0,40 ---> 24=60*0,40
Άρα ο καθένας χωρικός εισέπραξε από την πώληση των αυγών του 24€
Και μια πολύ ωραία και σύντομη λύση του φίλου της ιστοσελίδας Voulagx.
Η εξίσωση (2) γράφεται:
α*x=(100-α)*ψ ---> χ/ψ=(100-α)/α (2)
Διαιρώντας κατά μέλη τις εξισώσεις (3) και (4) έχουμε:
[(100-α)/α]*[χ/ψ]=45/20=9/4=(3/2)^2
και λόγω της (2):
[(100-α)/α]^2=(3/2)^2
και επειδή αναζητούμε λύσεις στο σύνολο των ρητών θετικών αριθμών θα έχουμε:
(100-α)/α=3/2 ---> 200-2α=3α ---> 200=5α ---> α=40
άρα β=100-40=60.

Κυριακή, 2 Απριλίου 2017

Οι Κάρτες

0σχόλια
Ο Παναγιώτης έπαιξε από δύο παρτίδες ενός παιχνιδιού µε κάρτες, µε καθέναν από τους φίλους του Αντώνη, Δημήτρη, και Γιώργο. Πρώτα έπαιξε µε τον Αντώνη διπλασιάζοντας τις κάρτες του στην πρώτη παρτίδα, ενώ στη δεύτερη έχασε 25 κάρτες. Στη συνέχεια, παίζοντας µε το Δημήτρη, αρχικά τριπλασίασε τις κάρτες που είχε και μετά έχασε 15 κάρτες. Τέλος, στην πρώτη παρτίδα µε το Γιώργο, κέρδισε 50 κάρτες, αλλά στη δεύτερη έχασε 33. Μετά το τέλος των παρτίδων ο Παναγιώτης είχε 197 κάρτες. Με πόσες κάρτες ξεκίνησε να παίζει; (Κατ.34)

Λύση

Ο Παναγιώτης ξεκίνησε να παίζει με 45 κάρτες. Έστω «x» οι κάρτες που είχε στην αρχή ο Παναγιώτης. Βάσει των δεδομένων της εκφώνησης του προβλήματος έχουμε:
α)Πρώτη Παρτίδα: Παναγιώτης – Αντώνης:
Διπλασιασμός των καρτών του Παναγιώτη:2χ.
β)Δεύτερη Παρτίδα: Παναγιώτης – Αντώνης:
Ο Παναγιώτης χάνει 25 κάρτες:(2χ-25).
α)Πρώτη Παρτίδα: Παναγιώτης –Δημήτρης:
Τριπλασιασμός των καρτών του Παναγιώτη που είχε μετά τη δεύτερη παρτίδα με τον Αντώνη:
3*(2χ-25).
β)Δεύτερη Παρτίδα: Παναγιώτης –Δημήτρη:
Ο Παναγιώτης χάνει 15 κάρτες: [3*(2χ-25)-15]
α)Πρώτη Παρτίδα: Παναγιώτης – Γιώργος:
Ο Παναγιώτης κερδίζει 50 κάρτες: [3*(2χ-25)-15+50]
β)Δεύτερη Παρτίδα: Παναγιώτης – Γιώργος:
Ο Παναγιώτης χάνει 33 κάρτες: [3*(2χ-25)-15+50-33].
Μετά τ’ ανωτέρω αποτελέσματα είχε 197 κάρτες, οπότε έχουμε την εξίσωση:
[3*(2x-25)-15+50-33]=197 --> 6x-75 -15+50-33=197 -->
6x=197+75+15-50+33 --> 6x=320-50 --> 6x=270 --> x=270/6 --> x=45
Επαλήθευση:
[3*(2x-25)-15+50-33]=197 --> [[3*(2*45)-25]-15+50-33]=197 -->
[[(3*(90-25]-15+50-33]=197 --> [(3*65)-15+50-33]=197 --> 195-15+50-33=197

Παρασκευή, 31 Μαρτίου 2017

Το Γινόμενο των Ηλικιών ΙΙ

3σχόλια
Το γινόμενο των ηλικιών μιας μητέρας και των τριών παιδιών της ισούται με 41.041. Να βρεθούν:
(α) Οι ηλικίες των παιδιών.
(β)Η ηλικία της μητέρας.
(γ) Πριν πόσα χρόνια το γινόμενο των ηλικιών των παιδιών της ήταν ίσο με την ηλικία της μητέρας;
Διευκρίνιση:
Η διαφορά στο πρόβλημα (ΙΙ) από το πρόβλημα (Ι) έγκειται  στην πρόταση (γ) εν σχέσει με την πρόταση (ii) στο πρόβλημα (Ι). Βλέπε εδώ:
(Κατ.34)
Πηγή: 5ος Μαθηματικός Διαγωνισμός «Ο Επιμενίδης», Α΄ Γυμνασίου 29-10-2016

Λύση

Λύση του Voulagx.
http://users.uoi.gr/abeligia/NumberTheory/NT2014/NT_TheoreticalTopics2014.pdf
Συμφωνα με τα Κριτηρια Δαιρετοτητας του ανωτερω λινκ, εχουμε:
α=41041=10*4104+1
Α)Διαιρετοτητα δια του 7:
4104-2*1=4102
410-2*2=406
40-2*6=28=4*7=πολλ7 άρα: 7/41041
Β)Διαιρετοτητα δια του 11:
4*(-1)^5+1*(-1)^4+0*(-1)^3+4*(-1)^2+1*(-1)^1=-4+1-0+4-1=0=πολλ11 άρα: 11/41041
Γ)Διαιρετοτητα δια του 13:
4104-9*1=4095
409-9*5=364
36-9*4=36-36=0=πολλ9 άρα:13/41041
Συνεπως: 7*11*13/41041 και: 7*11*13*χ=41041 <=> χ=41041/(7*11*13)=41041/1001=41
Προφανως η ηλικια της μητερας ειναι 41 και των παιδιων 7,11 και 13.
Εστω οτι πριν απο χ χρονια το γινόμενο των ηλικιών των παιδιών της ήταν ίσο με την ηλικία της μητέρας. Τοτε:
(41-χ)=(13-χ)(11-χ)(7-χ), 0 μικρότερο χ μικρότερο 7
η εξισωση επαληθευεται για: χ=6.

Λύση του θεματοδότη.
Πριν 6 χρόνια το γινόμενο των ηλικιών των παιδιών της ήταν ίσο με την ηλικία της μητέρας. Αναλύουμε τον αριθμό 41.041 σε γινόμενο πρώτων παραγόντων κι’ έχουμε:
41.041=7*11*13*41
Επομένως οι ηλικίες των τριών παιδιών είναι:
(α) 7 ετών, 11 ετών, και 13 ετών αντιστοίχως.
(β)Και της μητέρας η ηλικία είναι: 41 ετών.
(γ) Έστω ότι πριν από «y» χρόνια το γινόμενο των ηλικιών των παιδιών ήταν ίσο με την ηλικία της μητέρας.
Πριν «y» χρόνια ήταν:
Ηλικία μητέρας: (41–y)
Ηλικίες παιδιών: (7–y), (11–y), και (13–y) αντίστοιχα.
Βάσει των δεδομένων της εκφώνησης του προβλήματος έχουμε την εξίσωση:
(41–y) = (7–y)*(11–y)*(13–y) (1)
(41–y) = -y^3+31*y^2–311*y+1.001
y^3–31*y^2+310*y–960=0
(y–6)*(y^2–25*y+160)=0
(y–6) = 0 ή (y^2–25*y+160)=0 (αδύνατη, διότι έχει Δ = -15 < 0)
Άρα: y=6
Επομένως πριν από 6 χρόνια το γινόμενο των ηλικιών των παιδιών ήταν ίσο με την ηλικία της μητέρας.
Επαλήθευση: Πριν 6 χρόνια ήταν:
Ηλικία μητέρας: 41–6 = 35 ετών
Ηλικίες παιδιών: 7–6=1έτους, 11–6=5ετών, και 13–6=7ετών αντίστοιχα και το γινόμενο των ηλικιών τους ισούται με 1*5*7 = 35
Επαλήθευση:
(41–y) = (7–y)*(11–y)*(13–y) ---> 41-6=(7-6)*(11-6)*(13-6) ---> 35=1*5*7 ο.ε.δ.
 

Papaveri48 © 2010

PSD to Blogger Templates by OOruc & PSDTheme by PSDThemes